Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441556

RESUMO

From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.


Assuntos
Anormalidades Múltiplas , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Centríolos , Infertilidade Masculina/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Sêmen
2.
Clin Genet ; 105(2): 220-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950557

RESUMO

Motile cilia and flagella are closely related organelles structured around a highly conserved axoneme whose formation and maintenance involve proteins from hundreds of genes. Defects in many of these genes have been described to induce primary ciliary dyskinesia (PCD) mainly characterized by chronic respiratory infections, situs inversus and/or infertility. In men, cilia/flagella-related infertility is usually caused by asthenozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we investigated a cohort of 196 infertile men displaying a typical MMAF phenotype without any other PCD symptoms. Analysis of WES data identified a single case carrying a deleterious homozygous GAS8 variant altering a splice donor consensus site. This gene, also known as DRC4, encodes a subunit of the Nexin-Dynein Regulatory Complex (N-DRC), and has been already associated to male infertility and mild PCD. Confirming the deleterious effect of the candidate variant, GAS8 staining by immunofluorescence did not evidence any signal from the patient's spermatozoa whereas a strong signal was present along the whole flagella length in control cells. Concordant with its role in the N-DRC, transmission electron microscopy evidenced peripheral microtubule doublets misalignments. We confirm here the importance of GAS8 in the N-DRC and observed that its absence induces a typical MMAF phenotype not necessarily accompanied by other PCD symptoms.


Assuntos
Axonema , Infertilidade Masculina , Masculino , Humanos , Axonema/genética , Mutação , Sêmen , Cauda do Espermatozoide , Infertilidade Masculina/genética , Espermatozoides , Flagelos , Proteínas Associadas aos Microtúbulos/genética , Dineínas/genética
3.
Elife ; 122023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934199

RESUMO

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Sêmen , Flagelos , Fertilidade , Proteínas de Ligação ao Cálcio , Dineínas
4.
J Refract Surg ; 39(7): 491-498, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449510

RESUMO

PURPOSE: To evaluate a desiccation protocol for the long-term preservation of human small incision lenticule extraction (SMILE) lenticules and to study their integration in an in vivo rabbit model. METHODS: Lenticules were retrieved after SMILE procedures in patients, then desiccated according to a novel protocol. Histologic and electron microscopic analyses were performed. Six rabbit eyes received grafts with an inlay technique, which consisted of inserting a desiccated lenticule into a stromal pocket. Rabbits were killed at different times between 6 and 24 weeks. Rabbit corneas were analyzed using optical coherence tomography, histology, and DAPI staining. RESULTS: Microscopic analysis of desiccated lenticules showed a preserved stromal architecture after rehydration. A decellularization of the lenticules after desiccation was observed without any chemical treatment. All rabbit corneas remained clear after grafting human lenticules and no rejection occurred. Optical coherence tomography showed regular lenticular implantation and no decrease in lenticule thickness. Histologic analysis showed no inflammatory infiltration around lenticules and no nuclear material inside lenticules after 6 months. CONCLUSIONS: A favorable integration of desiccated human SMILE lenticules in rabbit corneas was observed. The refractive issue of lenticular implantation must be investigated next. Clinical trials are needed to evaluate the use of desiccated SMILE lenticules to treat hyperopia or keratoconus in humans. [J Refract Surg. 2023;39(7):491-498.].


Assuntos
Substância Própria , Cirurgia da Córnea a Laser , Humanos , Animais , Coelhos , Substância Própria/patologia , Dessecação , Cirurgia da Córnea a Laser/métodos , Córnea/cirurgia , Refração Ocular
5.
Clin Oral Investig ; 27(8): 4541-4552, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37261496

RESUMO

OBJECTIVES: Minipigs present advantages for studying oral bone regeneration; however, standardized critical size defects (CSD) for alveolar bone have not been validated yet. The objectives of this study are to develop a CSD in the mandibular alveolar bone in Aachen minipigs and to further investigate the specific role of periosteum. MATERIALS AND METHODS: Three female Aachen minipigs aged 17, 24, and 84 months were used. For each minipig, a split-mouth design was performed: an osteotomy (2 cm height × 2.5 cm length) was performed; the periosteum was preserved on the left side and removed on the right side. Macroscopic, cone beam computed tomography (CBCT), microcomputed tomography (µCT), and histological analyses were performed to evaluate the bone defects and bone healing. RESULTS: In both groups, spontaneous healing was insufficient to restore initial bone volume. The macroscopic pictures and the CBCT results showed a larger bone defect without periosteum. µCT results revealed that BMD, BV/TV, and Tb.Th were significantly lower without periosteum. The histological analyses showed (i) an increased osteoid apposition in the crestal area when periosteum was removed and (ii) an ossification process in the mandibular canal area in response to the surgical that seemed to increase when periosteum was removed. CONCLUSIONS: A robust model of CSD model was developed in the alveolar bone of minipigs that mimics human mandibular bone defects. This model allows to further investigate the bone healing process and potential factors impacting healing such as periosteum. CLINICAL RELEVANCE: This model may be relevant for testing different bone reconstruction strategies for preclinical investigations.


Assuntos
Regeneração Óssea , Periósteo , Animais , Feminino , Suínos , Humanos , Periósteo/cirurgia , Porco Miniatura , Projetos Piloto , Microtomografia por Raio-X , Regeneração Óssea/fisiologia , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Mandíbula/patologia
7.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36768883

RESUMO

Male infertility is a common and complex disease and presents as a wide range of heterogeneous phenotypes. Multiple morphological abnormalities of the sperm flagellum (MMAF) phenotype is a peculiar condition of extreme morphological sperm defects characterized by a mosaic of sperm flagellum defects to a total asthenozoospermia. At this time, about 40 genes were associated with the MMAF phenotype. However, mutation prevalence for most genes remains individually low and about half of individuals remain without diagnosis, encouraging us to pursue the effort to identify new mutations and genes. In the present study, an a cohort of 167 MMAF patients was analyzed using whole-exome sequencing, and we identified three unrelated patients with new pathogenic mutations in DNHD1, a new gene recently associated with MMAF. Immunofluorescence experiments showed that DNHD1 was totally absent from sperm cells from DNHD1 patients, supporting the deleterious effect of the identified mutations. Transmission electron microscopy reveals severe flagellum abnormalities of sperm cells from one mutated patient, which appeared completely disorganized with the absence of the central pair and midpiece defects with a shortened and misshapen mitochondrial sheath. Immunostaining of IFT20 was not altered in mutated patients, suggesting that IFT may be not affected by DNHD1 mutations. Our data confirmed the importance of DNHD1 for the function and structural integrity of the sperm flagellum. Overall, this study definitively consolidated its involvement in MMAF phenotype on a second independent cohort and enriched the mutational spectrum of the DNHD1 gene.


Assuntos
Anormalidades Múltiplas , Infertilidade Masculina , Humanos , Masculino , Anormalidades Múltiplas/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação , Sêmen , Cauda do Espermatozoide , Espermatozoides/patologia , Dineínas/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887380

RESUMO

The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes' PLA2R1 participates in fertilization optimization.


Assuntos
Sêmen , Espermatozoides , Animais , Fertilização , Fertilização In Vitro , Fosfolipases A2 do Grupo X/metabolismo , Fosfolipases A2 do Grupo X/farmacologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sêmen/metabolismo , Espermatozoides/metabolismo
10.
Nucleic Acids Res ; 50(13): 7350-7366, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766398

RESUMO

The histone variant H3.3 is encoded by two distinct genes, H3f3a and H3f3b, exhibiting identical amino-acid sequence. H3.3 is required for spermatogenesis, but the molecular mechanism of its spermatogenic function remains obscure. Here, we have studied the role of each one of H3.3A and H3.3B proteins in spermatogenesis. We have generated transgenic conditional knock-out/knock-in (cKO/KI) epitope-tagged FLAG-FLAG-HA-H3.3B (H3.3BHA) and FLAG-FLAG-HA-H3.3A (H3.3AHA) mouse lines. We show that H3.3B, but not H3.3A, is required for spermatogenesis and male fertility. Analysis of the molecular mechanism unveils that the absence of H3.3B led to alterations in the meiotic/post-meiotic transition. Genome-wide RNA-seq reveals that the depletion of H3.3B in meiotic cells is associated with increased expression of the whole sex X and Y chromosomes as well as of both RLTR10B and RLTR10B2 retrotransposons. In contrast, the absence of H3.3B resulted in down-regulation of the expression of piRNA clusters. ChIP-seq experiments uncover that RLTR10B and RLTR10B2 retrotransposons, the whole sex chromosomes and the piRNA clusters are markedly enriched of H3.3. Taken together, our data dissect the molecular mechanism of H3.3B functions during spermatogenesis and demonstrate that H3.3B, depending on its chromatin localization, is involved in either up-regulation or down-regulation of expression of defined large chromatin regions.


Assuntos
Histonas , RNA Interferente Pequeno/metabolismo , Retroelementos , Espermatogênese , Animais , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Cromossomos Sexuais/metabolismo
11.
Clin Genet ; 102(1): 22-29, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460069

RESUMO

A female factor is present in approximately 70% of couple infertility, often due to ovulatory disorders. In oocyte maturation defect (OMD), affected patients have a primary infertility with normal menstrual cycles but produce no oocyte, degenerated (atretic) or abnormal oocytes blocked at different stages of maturation. Four genes have so far been associated with OMD: PATL2, TUBB8, WEE2, and ZP1. In our initial study, 6 out of 23 OMD subjects were shown to carry the same PATL2 homozygous loss of function variant and one patient had a TUBB8 truncating variant. Here, we included four additional OMD patients and reanalyzed all 27 subjects. In addition to the seven patients with a previously identified defect, five carried the same deleterious homozygous ZP1 variant (c.1097G>A; p.Arg366Gln). All the oocytes from ZP1-associated patients appeared shriveled and dark indicating that the abnormal ZP1 protein induced oocyte death and degeneration. Overall ZP1-associated patients had degenerated or absent oocytes contrary to PATL2-associated subjects who had immature oocytes blocked mainly at the germinal vesicle stage. In this cohort of North African OMD patients, whole exome sequencing permitted to diagnose 44% of the patients studied and to identify a new frequent ZP1 variant.


Assuntos
Infertilidade Feminina , Oócitos , Estudos de Coortes , Feminino , Humanos , Infertilidade Feminina/genética , Oócitos/metabolismo , Oogênese , Tubulina (Proteína)/genética , Sequenciamento do Exoma , Glicoproteínas da Zona Pelúcida/genética
12.
Appl Opt ; 61(12): 3337-3348, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35471429

RESUMO

We present a compact 3D diffractive microscope that can be inserted directly in a cell incubator for long-term observation of developing organisms. Our setup is particularly simple and robust, since it does not include any moving parts and is compatible with commercial cell culture containers. It has been designed to image large specimens (>100×100×100µm3) with subcellular resolution. The sample's optical properties [refractive index (RI) and absorption] are reconstructed in 3D from intensity-only images recorded with different illumination angles produced by an LED array. The reconstruction is performed using the beam propagation method embedded inside a deep-learning network where the layers encode the optical properties of the object. This deep neural network is trained for a given multiangle intensity acquisition. After training, the weights of the neural network deliver the 3D distribution of the optical properties of the sample. The effect of spherical aberrations due to the sample holder/air interfaces are taken into account in the forward model. Using this approach, we performed time-lapse 3D imaging of preimplantation mouse embryos over six days. Images of embryos from a single cell (low-scattering regime) to the blastocyst stage (highly scattering regime) were successfully reconstructed. Due to its subcellular resolution, our system can provide quantitative information on the embryos' development and viability. Hence, this technology opens what we believe to be novel opportunities for 3D label-free live-cell imaging of whole embryos or organoids over long observation times.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Refratometria , Imagem com Lapso de Tempo , Tomografia , Tomografia Computadorizada por Raios X
13.
Elife ; 112022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451961

RESUMO

Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects - the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.


Assuntos
Anormalidades Múltiplas , Astenozoospermia , Infertilidade Masculina , Anormalidades Múltiplas/genética , Astenozoospermia/genética , Humanos , Infertilidade Masculina/genética , Masculino , Herança Multifatorial , Mutação , Cauda do Espermatozoide , Espermatozoides
14.
Am J Hum Genet ; 109(3): 508-517, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172124

RESUMO

Non-obstructive azoospermia (NOA) is a severe and frequent cause of male infertility, often treated by testicular sperm extraction followed by intracytoplasmic sperm injection. The aim of this study is to improve the genetic diagnosis of NOA, by identifying new genes involved in human NOA and to better assess the chances of successful sperm extraction according to the individual's genotype. Exome sequencing was performed on 96 NOA-affected individuals negative for routine genetic tests. Bioinformatics analysis was limited to a panel of 151 genes selected as known causal or candidate genes for NOA. Only highly deleterious homozygous or hemizygous variants were retained as candidates. A likely causal defect was identified in 16 genes in a total of 22 individuals (23%). Six genes had not been described in man (DDX25, HENMT1, MCMDC2, MSH5, REC8, TDRKH) and 10 were previously reported (C14orf39, DMC1, FANCM, GCNA, HFM1, MCM8, MEIOB, PDHA2, TDRD9, TERB1). Seven individuals had defects in genes from piwi or DNA repair pathways, three in genes involved in post-meiotic maturation, and 12 in meiotic processes. Interestingly, all individuals with defects in meiotic genes had an unsuccessful sperm retrieval, indicating that genetic diagnosis prior to TESE could help identify individuals with low or null chances of successful sperm retrieval and thus avoid unsuccessful surgeries.


Assuntos
Azoospermia , Azoospermia/diagnóstico , Azoospermia/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Recuperação Espermática , Testículo/metabolismo , Sequenciamento do Exoma
15.
Asian J Androl ; 24(3): 243-247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35017390

RESUMO

Thanks to tremendous advances in sequencing technologies and in particular to whole exome sequencing (WES), many genes have now been linked to severe sperm defects. A precise genetic diagnosis is obtained for a minority of patients and only for the most severe defects like azoospermia or macrozoospermia which is very often due to defects in the aurora kinase C (AURKC gene. Here, we studied a subject with a severe oligozoospermia and a phenotypic diagnosis of macrozoospermia. AURKC analysis did not reveal any deleterious variant. WES was then initiated which permitted to identify a homozygous loss of function variant in the zinc finger MYND-type containing 15 (ZMYND15 gene. ZMYND15 has been described to serve as a switch for haploid gene expression, and mice devoid of ZMYND15 were shown to be sterile due to nonobstructive azoospermia (NOA). In man, ZMYND15 has been associated with NOA and severe oligozoospermia. We confirm here that the presence of a bi-allelic ZMYND15 variant induces a severe oligozoospermia. In addition, we show that severe oligozoospermia can be associated macrozoospermia, and that a phenotypic misdiagnosis is possible, potentially delaying the genetic diagnosis. In conclusion, genetic defects in ZMYND15 can induce complete NOA or severe oligozoospermia associated with a very severe teratozoospermia. In our experience, severe oligozoospermia is often associated with severe teratozoospermia and can sometimes be misinterpreted as macrozoospermia or globozoospermia. In these instances, specific AURKC or dpy-19 like 2 (DPY19L2) diagnosis is usually negative and we recommend the direct use of a pan-genomic techniques such as WES.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Proteínas Repressoras/metabolismo , Teratozoospermia , Animais , Azoospermia/genética , Humanos , Infertilidade Masculina/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Mutação , Oligospermia/genética , Teratozoospermia/genética
16.
Biol Reprod ; 106(3): 463-476, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34875016

RESUMO

Infertility represents a growing burden worldwide, with one in seven couples presenting difficulties conceiving. Among these, 10-15% of the men have idiopathic infertility that does not correlate with any defect in the classical sperm parameters measured. In the present study, we used a mouse model to investigate the effects of maternal undernutrition on fertility in male progeny. Our results indicate that mothers fed on a low-protein diet during gestation and lactation produce male offspring with normal sperm morphology, concentration, and motility but exhibiting an overall decrease of fertility when they reach adulthood. Particularly, in contrast to control, sperm from these offspring show a remarkable lower capacity to fertilize oocytes when copulation occurs early in the estrus cycle relative to ovulation, due to an altered sperm capacitation. Our data demonstrate for the first time that maternal nutritional stress can have long-term consequences on the reproductive health of male progeny by affecting sperm physiology, especially capacitation, with no observable impact on spermatogenesis and classical quantitative and qualitative sperm parameters. Moreover, our experimental model could be of major interest to study, explain, and ultimately treat certain categories of infertilities.


Assuntos
Infertilidade Masculina , Desnutrição , Adulto , Animais , Feminino , Fertilidade , Humanos , Infertilidade Masculina/etiologia , Lactação , Masculino , Desnutrição/complicações , Camundongos , Gravidez , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides/fisiologia
17.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792097

RESUMO

Defects in the structure or motility of cilia and flagella may lead to severe diseases such as primary ciliary dyskinesia (PCD), a multisystemic disorder with heterogeneous manifestations affecting primarily respiratory and reproductive functions. We report that CFAP61 is a conserved component of the calmodulin- and radial spoke-associated complex (CSC) of cilia. We find that a CFAP61 splice variant, c.143+5G>A, causes exon skipping/intron retention in human, inducing a multiple morphological abnormalities of the flagella (MMAF) phenotype. We generated Cfap61 knockout mice that recapitulate the infertility phenotype of the human CFAP61 mutation, but without other symptoms usually observed in PCD. We find that CFAP61 interacts with the CSC, radial spoke stalk and head. During early stages of Cfap61-/- spermatid development, the assembly of radial spoke components is impaired. As spermiogenesis progresses, the axoneme in Cfap61-/- cells becomes unstable and scatters, and the distribution of intraflagellar transport proteins is disrupted. This study reveals an organ-specific mechanism of axoneme stabilization that is related to male infertility.


Assuntos
Infertilidade Masculina , Proteínas de Membrana , Mutação Puntual , Cauda do Espermatozoide/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Animais , Axonema/genética , Axonema/metabolismo , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Splicing de RNA
18.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638739

RESUMO

Numerical chromosomal aberrations in sperm are considered to be a major factor in infertility, early pregnancy loss and syndromes with developmental and cognitive disabilities in mammals, including primates. Despite numerous studies in human and farm animals, the incidence and importance of sperm aneuploidies in non-human primate remains mostly undetermined. Here we investigated the incidence and distribution of sperm aneuploidy in chimpanzees (Pan troglodytes), the species closest to human. We identify evolutionary conserved DNA sequences in human and chimpanzee and selected homologous sub-telomeric regions for all chromosomes to build custom probes and perform sperm-FISH analysis on more than 10,000 sperm nuclei per chromosome. Chimpanzee mean autosomal disomy rate was 0.057 ± 0.02%, gonosomes disomy rate was 0.198% and the total disomy rate was 1.497%. The proportion of X or Y gametes was respectively 49.94% and 50.06% for a ratio of 1.002 and diploidy rate was 0.053%. Our data provide for the first time an overview of aneuploidy in non-human primate sperm and shed new insights into the issues of aneuploidy origins and mechanisms.


Assuntos
Aneuploidia , Cromossomos de Mamíferos/genética , Hibridização in Situ Fluorescente , Espermatozoides , Animais , Humanos , Masculino , Pan troglodytes
19.
Hum Genet ; 140(9): 1367-1377, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34255152

RESUMO

Spermatozoa are polarized cells with a head and a flagellum joined together by the connecting piece. Flagellum integrity is critical for normal sperm function, and flagellum defects consistently lead to male infertility. Multiple morphological abnormalities of the flagella (MMAF) is a distinct sperm phenotype consistently leading to male infertility due to a reduced or absent sperm motility associated with severe morphological and ultrastructural flagellum defects. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analyzed remain unresolved, suggesting that many yet uncharacterized gene defects account for this phenotype. By performing a retrospective exome analysis of the unsolved cases from our initial cohort of 167 infertile men with a MMAF phenotype, we identified one individual carrying a homozygous frameshift variant in CFAP206, a gene encoding a microtubule-docking adapter for radial spoke and inner dynein arm. Immunostaining experiments in the patient's sperm cells demonstrated the absence of WDR66 and RSPH1 proteins suggesting severe radial spokes and calmodulin and spoke-associated complex defects. Using the CRISPR-Cas9 technique, we generated homozygous Cfap206 knockout (KO) mice which presented with male infertility due to functional, structural and ultrastructural sperm flagellum defects associated with a very low rate of embryo development using ICSI. Overall, we showed that CFAP206 is essential for normal sperm flagellum structure and function in human and mouse and that bi-allelic mutations in CFAP206 cause male infertility in man and mouse by inducing morphological and functional defects of the sperm flagellum that may also cause ICSI failures.


Assuntos
Proteínas do Citoesqueleto , Mutação da Fase de Leitura , Homozigoto , Infertilidade Masculina , Cauda do Espermatozoide/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos
20.
Cell Calcium ; 97: 102435, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34167050

RESUMO

The Transient Receptor Potential Vanilloid type 2 (TRPV2) channel is highly selective for Ca2+ and can be activated by lipids, such as LysoPhosphatidylCholine (LPC). LPC analogues, such as the synthetic alkyl-ether-lipid edelfosine or the endogenous alkyl-ether-lipid Platelet Activating Factor (PAF), modulates ion channels in cancer cells. This opens the way to develop alkyl-ether-lipids for the modulation of TRPV2 in cancer. Here, we investigated the role of 2-Acetamido-2-Deoxy-l-O-Hexadecyl-rac-Glycero-3-PhosphatidylCholine (AD-HGPC), a new alkyl-ether-lipid (LPC analogue), on TRPV2 trafficking and its impact on Ca2+ -dependent cell migration. The effect of AD-HGPC on the TRPV2 channel and tumour process was further investigated using calcium imaging and an in vivo mouse model. Using molecular and pharmacological approaches, we dissected the mechanism implicated in alkyl-ether-lipids sensitive TRPV2 trafficking. We found that TRPV2 promotes constitutive Ca2+ entry, leading to migration of highly metastatic breast cancer cell lines through the PI3K/Akt-Girdin axis. AD-HGPC addresses the functional TRPV2 channel in the plasma membrane through Golgi stimulation and PI3K/Akt/Rac-dependent cytoskeletal reorganization, leading to constitutive Ca2+ entry and breast cancer cell migration (without affecting the development of metastasis), in a mouse model. We describe, for the first time, the biological role of a new alkyl-ether-lipid on TRPV2 channel trafficking in breast cancer cells and highlight the potential modulation of TRPV2 by alkyl-ether-lipids as a novel avenue for research in the treatment of metastatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...